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Abstract:

• Two-associate class triangular designs have been explored greatly but the Tm-type
PBIB designs (m ≥ 3) largely remains unexplored. The paper is written with an
objective to construct a new series of Tm-type PBIB designs and to derive some
more series of PBIB designs based on these PBIB designs, which we have called as
Tm-assisted PBIB designs. For this, we begin by first constructing a series of Tm-
type PBIB designs and then based on these designs, three series of Tm-assisted PBIB
designs have been constructed. The association schemes of Tm-type and Tm-assisted
PBIB designs have been discussed in their complete generalized form.
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1. INTRODUCTION

The first step before performing an experiment is to devise the way various
treatments are allotted to different experimental units. Experimental designs
assist us in performing this task keeping in mind various constraints like constraints
on experimental material, constraints on the cost of the experimental setup etc.

In the class of block designs, incomplete block designs are used whenever
the constraints on the experimental materials do not allow us to use complete
blocks or when the heterogeneity increases as a result of formation of complete
blocks. Partially Balanced Incomplete Block (PBIB) designs, which fall under
the category of incomplete block designs, are among the popular incomplete
block designs which help in making treatment comparisons by utilizing lesser
experimental material.

Since their introduction, the two-associate class PBIB designs have been
studied to a greater extent by many authors. Notable among them are Bose and
Nair ([1]), Bose and Shimamoto ([2]), Raghavarao ([12]), Clatworthy et al. ([5])
etc. Among the two associate class association scheme, triangular association
scheme is interesting due to its specific arrangement of symbols in the form of
a matrix. Ogaswara ([11]) generalized the triangular association scheme and
introduced Tm – association scheme with m – associate classes. Later, John
([7]), Saha ([15]), Sinha ([22]), Sinha ([23]), Cheng et al. ([4]), Meitei ([8]),
Sinha et al. ([24]), Singh ([19]) etc., studied the Tm-association scheme and
constructed some Tm-type PBIB designs. Recently, Ruj and Roy (2007) have
shown the applications of PBIB designs in key predistribution by using triangular
association scheme.

Even today, the higher associate class Tm-type PBIB designs (m ≥ 3)
largely remains unexplored and because the higher associate class PBIB designs
are needed as they provide us new and more efficient PBIB designs as discussed
by Raghavarao ([12]), Sharma and Garg ([17]) etc., the present paper has been
written to make some contributions towards the construction of higher-associate
class Tm-type PBIB designs. For this, we will begin by discussing Tm-type
association scheme and then construct a new series of Tm-type PBIB designs
for which we have discussed a methodology to directly obtain the incidence
matrix of the designs. After this, we will employ some easy and interesting
techniques which utilize triangular type PBIB designs to construct some more
four-associate class PBIB designs with different parametric combinations. We
have called these designs as Tm-assisted PBIB designs. Their corresponding
association schemes have also been discussed. We have also prepared a table
containing PBIB designs constructed by using different methodologies discussed
in this paper. This table compares the listed designs with designs having same
parameters listed in Clatworthy et al. ([5]). The R programming codes for the
computerized construction of all the series have been given in the Appendices.
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2. Tm-TYPE ASSOCIATION SCHEME

Tm-type or m-dimensional triangular association scheme was first defined
by Ogasawara ([11]) and we can refer to it for its original definition. We have also
defined the Tm-type association scheme, for any arbitrary m ≥ 2, in the following
way:

Let us consider a vector of size b containing only binary elements 0’s and
1’s such that the vector contains r unit elements and (b – r) 0’s. The number of
associate classes, i.e., m is given by:

m = min(r, (b− r))

Let us say that this vector denotes our first treatment. The remaining (v – 1)
treatments can be obtained by taking different combinations of the elements of
this vector and in all we will get v =

(
b
r

)
treatments. From this set of treatments,

a treatment is the 0th-associate of its own and two treatments are mutually ith-
associates if the corresponding vectors have (m – i) unit or null elements in
common according to if r < (b – r) or (b – r) < r respectively. The parameters
of the association scheme are:

v =

(
b

r

)
ni =

(
m

i

)(
b−m

i

)
; i = 0, 1, 2, . . . ,m

pi
jk =

m−i∑
u=0

(
m− i

u

)(
i

m− j− u

)(
i

m− k− u

)(
b−m− i

j + k + u−m

)
; i, j, k = 0, 1, 2, . . . ,m

3. CONSTRUCTION OF Tm-TYPE PBIB DESIGNS

Just like in association scheme, form a vector of size b. Now make all
possible combinations of the elements of this vector and in all we will get

(
b
r

)
different vectors. Now make a matrix N of order

(
b
r

)
× b matrix using these(

b
r

)
vectors as its rows such that any vector may form any row of this matrix.

The resulting
(

b
r

)
× b matrix will be a matrix of 0’s and 1’s which will form

the incidence matrix of a PBIB design following the Tm-type association scheme
defined in section 2 with the following parameters:

v =

(
b

r

)
, b, r, k =

(
b− 1

r− 1

)
, λi = r− i; i = 1, 2, . . . ,m
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Example 3.1. To illustrate the above construction methodology, let us
consider a vector of size 6 having three unit (1) elements and three zero (0)
elements. Following the above discussed methodology and taking all possible
combinations of this vector, we will get 20 distinct vectors in all which will form
the rows of the following incidence matrix N.

N =



1 0 0 1 0 1
1 1 1 0 0 0
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 0 1 1 0 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 0 0 1 1
1 0 0 1 1 0
0 1 1 1 0 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
0 0 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1


The incidence matrix N corresponds to the following set of six blocks:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) (2, 3, 4, 5, 11, 12, 13, 14, 15, 16)

(2, 6, 7, 8, 11, 12, 13, 17, 18, 19) (1, 5, 6, 10, 11, 14, 16, 17, 18, 20)

(4, 8, 9, 10, 13, 14, 15, 17, 19, 20) (1, 3, 7, 9, 12, 15, 16, 18, 19, 20)

The above set of blocks will constitute a Tm-type PBIB design with the following
parameters:

v = 20 b = 6 r = 3 k = 10

λ1 = 2 λ2 = 1 λ3 = 0

n1 = 9 n2 = 9 n3 = 1

P1 =

4 4 0
4 4 1
0 1 0

 P2 =

4 4 1
4 4 0
1 0 0

 P3 =

0 9 0
9 0 0
0 0 0
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4. CONSTRUCTION OF SOME Tm-ASSISTED PBIB DESIGNS

There is always a requirement for the construction of PBIB designs which
are either new or more efficient than the already existing PBIB designs in the
literature. For this purpose, the researchers are working towards the construction
of higher associate class PBIB designs by devising new construction techniques
and association schemes. In this section, we will use the Tm-type PBIB designs
constructed above and apply some interesting techniques to construct some more
PBIB designs. Already existing Tm-type PBIB designs can also be used. The
association schemes of these derived PBIB designs have also been discussed.

4.1. Method – I

Using the incidence matrix of the Tm-type PBIB design constructed in
section 3 and its complementary matrix, we can obtain the incidence matrix of
another PBIB design through matrix augmentation. Let us say that N be the
incidence matrix of the Tm-type PBIB design as obtained in section 3 and NC

be its complement. Then another matrix N1 can be obtained through matrix
augmentation as below:

N1 =

[
N NC

NC N

]
Here, N is the incidence matrix of the Tm-type PBIB designs with the following
parameters:

v =

(
b

r

)
, b, r, k and λi; i = 1, 2, . . . ,m

and ni be the number of ith-associates of any treatment. (A)
Therefore, NC is the incidence matrix of the Tm-type PBIB designs with the
parameters given below:

vc =

(
bc

rc

)
, bc, rc, kc and λc

i ; i = 1, 2, . . . ,m

and ni be the number of ith-associates of any treatment (B)
Then the matrix N1 will form the incidence matrix of the PBIB design having
(2m + 1) associate classes and with the following parameters:

v1 = v + vc b1 = b + bc r1 = r + rc k1 = k + kc

Let the difference between r and rc be given by d = |r− rc|.
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(i) d = 0 (ii) d = 1 (iii) d ≥ 2

λ1
i = λi + λc

i ; λ1
i = r1 − i; λ1

i = λi + λc
i ;

i = 1, 2, . . . ,m i = 1, 2, . . . , 2m + 1 i = 1, 2, . . . ,m
λ1

m+1 = r1 λ1
m+1 = 0

λ1
j = λ1

j−(m+1); λ1
j = λ1

j−(m+1) − (d− 2);

j = m + 2,m + 3, . . . , 2m + 1 j = m + 2,m + 3, . . . , 2m + 1

On the basis of the value of d, we have the following three association schemes. Let
Si(α) denotes the set of ith-associates of treatment α in Tm-association scheme.
(i = 1, 2, . . . , m).
Therefore,pi

jk = |Sj(α) ∩ Sk(β)|
where α and β are mutually ith-associates and |Si(α)| represents the size of set
Si(α).

4.1.1. Association scheme for d = 0

We already know that the rows of the matrix N denote the corresponding
treatment number. Now keeping in view, the parameters (A), (B) and incidence
matrix N1, we define the following association scheme:

i. Two treatments are said to be ith-associates if the inner product of the
corresponding rows in the matrix N1 is λ1

i = λi + λc
i (i = 1, 2, . . . , m).

ii. Two treatments are said to be (m+1)th-associates if the inner product of
the corresponding rows in the matrix N1 is r.

iii. Two treatments are said to be jth-associates if the inner product of the
corresponding rows in the matrix N1 is λ1

j = λ1
(j−(m+1)) ; j = m + 2, m +

3, . . . , 2m + 1.

The above defined association scheme has the following parameters:

v1 =

(
b

r

)
+

(
bc

rc

)
, n1

i = ni; i = 1, 2, . . . ,m

n1
(m+1) = 1, n1

(m+j+1) = nj; j = 1, 2, . . . ,m

pi
jk = |S′j(α) ∩ S′k(β)|

where α and β are mutually ith-associates and i, j, k = 1, 2, . . . , 2m+1
and S′i(α) = Si(α); i = 1, 2, . . . ,m
S′i+m(α) = {α+ v}
where v denotes the number of treatments in Tm-type association scheme.
S′j+m+1(α) = Sj(α+ v); j = 1, 2, . . . ,m
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4.1.2. Association scheme for d = 1

Like in association scheme 4.1.1, we keep in view the parameters (A), (B)
and incidence matrix N1 to define the following association scheme as:
Two treatments are said to be ith-associates if the inner product of the corresponding
rows in the matrix N is λ1

i = r1 − i; i = 1, 2, . . . , 2m + 1.
Following are the parameters of the association scheme:

Suppose X is the set of values containing ni’s (i = 1, 2, . . . , m) in the
increasing order of their magnitudes. Therefore X contains m values with X(i)
corresponding to the ith value such that X(1) has the minimum and X(m) has the
maximum value. Let Ki(α) denotes the sets Sj(α) arranged in ascending order
of magnitudes for i, j = 1, 2, . . . , m such that K1(α) is minimum among Sj(α)
and Km(α) is maximum among Sj(α) (i, j = 1, 2, . . . , m). Now the sets of ith-
associates in this association scheme are:
S′i(α) = Ki(α); i = 1, 2, . . . ,m
S′i+m(α) = K(m−i+1)(α+ v); i = 1, 2, . . . ,m
S′2m+1(α) = {α+ v}
Keeping the cyclic order of treatments in mind.
Thus we have, pi

jk = |S′j(α) ∩ S′k(β)|
where α and β are mutually ith-associates and i, j and k = 1, 2, . . . , 2m+1

v1 =

(
b

r

)
+

(
bc

rc

)
n1

i = X(i); i = 1, 2, . . . ,m

n1
(m+j) = X(m− (j− 1)); j = 1, 2, . . . ,m and n1

(2m+1) = 1

4.1.3. Association scheme for d ≥ 2

Similar to association schemes 4.1.1 and 4.1.2, we keep in mind the parameters
(A), (B) and incidence matrix N1 to define our third association scheme:

i. Two treatments are said to be ith-associates if the inner product of the
corresponding rows in the matrix N1 is λ1

i = λi + λc
i (i = 1, 2, . . . ,m).

ii. Two treatments are said to be (m+1)th-associates if the inner product of
the corresponding rows in the matrix N1 is 0.

iii. Two treatments are said to be jth-associates if the inner product of the
corresponding rows in the matrix N1 is λ1

j = λ1
(j−(m+1)) − (d− 2);

j = m + 2,m + 3, . . . , 2m + 1.

This association scheme has the following parameters:

v1 =

(
b

r

)
+

(
bc

rc

)
n1

i = ni; i = 1, 2, . . . ,m
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n1
(m+1) = 1 and n1

(m+j+1) = n(m−(j−1)); j = 1, 2, . . . ,m

pi
jk = |S′j(α) ∩ S′k(β)|

where α and β are mutually ith-associates.
(i, j, k = 1, 2, ldots, 2m+1)
where,
S′i(α) = Si(α); i = 1, 2, . . . ,m
S′i+m(α) = {α+ v}
where v denotes the number of treatments in Tm-type association scheme.
S′j+m+1(α) = S(m−j+1)(α+ v); j = 1, 2, . . . ,m

Example 4.1. Suppose that we have a Tm-type PBIB design, with
v =

(
5
2

)
treatments where m = 2, and its complementary PBIB design has vc =

(
5
3

)
treatments.

For v =
(

5
2

)
treatments, let us consider the following vector of size 5 with

two unit elements and three zeroes. From the methodology discussed in section 3
by taking all possible combinations of this vector, we will get 10 distinct vectors
in all which will form the rows of the following incidence matrix N.

N =



1 1 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 1 0 0
0 1 0 0 1
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


The complement of this matrix, i.e., NC is given as:

NC =



0 0 1 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
1 0 0 1 1
1 0 1 1 0
1 0 1 0 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0



Therefore, according to the above discussed method, we can use the above
Tm-type PBIB design and its complementary PBIB designs to construct another
PBIB design with v1 =

(
5
2

)
+
(

5
3

)
= 20 treatments having five-associate classes.
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Following is the incidence matrix of the five-associate class PBIB design constructed
using the above discussed method which can be easily obtained using the incidence
matrices of Tm-type PBIB design and its complementary PBIB design.

N1 =

[
N NC

NC N

]

N1 =



1 1 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 1 0 0
0 1 0 0 1
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

0 0 1 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
1 0 0 1 1
1 0 1 1 0
1 0 1 0 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0

0 0 1 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
1 0 0 1 1
1 0 1 1 0
1 0 1 0 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0

1 1 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 1 0 0
0 1 0 0 1
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


The above incidence matrix corresponds to the following five-associate class PBIB
design:

v1 = 20 b1 = 10 r1 = 5 k1 = 10

λ1
1 = 4 λ1

2 = 3 λ1
3 = 2 λ1

4 = 1 λ1
5 = 0

n1
1 = 3 n1

2 = 6 n1
3 = 6 n1

4 = 3 n1
5 = 1

P1
1 =


0 2 0 0 0
2 0 4 0 0
0 4 0 2 0
0 0 2 0 1
0 0 0 1 0

 P1
2 =


1 0 2 0 0
0 3 0 2 0
2 0 3 0 1
0 2 0 1 0
0 0 1 0 0

 P1
3 =


0 2 0 1 0
2 0 3 0 1
0 3 0 2 0
1 0 2 0 0
0 1 0 0 0



P1
4 =


0 0 2 0 1
0 4 0 2 0
2 0 4 0 0
0 2 0 0 0
1 0 0 0 0

 P1
5 =


0 0 0 3 0
0 0 6 0 0
0 6 0 0 0
3 0 0 0 0
0 0 0 0 0
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4.2. Method–II

4.2.1. Association Scheme

Let us consider four quadrants and each of these contains exactly n = n′(n′−1)
2 ;

n′ > 3 treatments. These n treatments in each quadrant follow two-associate
triangular association scheme with n treatments and can be arranged in a n′ × n′

matrix containing blank diagonal elements in such a way that all the n treatments
are symmetric about the principal diagonal as shown in figure 1. Thus, we have
a total of v = 4n treatments in all which follow the following four-associate class
association scheme:

i. Two treatments are said to be the first associates if they belong to the same
row and same column of the matrix in the same quadrant.

ii. The remaining treatments of the matrix in the same quadrant which are
not the first associates of the treatment are said to be its second associates.

iii. Two treatments are said to be the third associates if they are in the adjacent
quadrants.

iv. Treatments in the diagonal quadrants are the fourth associates.

Following are the parameters of the association scheme:

v = 4n, n =
n′(n′ − 1)

2
; n′ > 3

n1 = 2(n′ − 2) n2 =
(n′ − 2)(n′ − 3)

2

n3 = n′(n′ − 1) = 2n n4 =
n′(n′ − 1)

2
= n

P1 =


(n′ − 2) (n′ − 3) 0 0

(n′ − 3) (n′−3)(n′−4)
2 0 0

0 0 n′(n′ − 1) 0

0 0 0 n′(n′−1)
2



P2 =


4 2n′ − 8 0 0

2n′ − 8 (n′−4)(n′−5)
2 0 0

0 0 n′(n′ − 1) 0

0 0 0 n′(n′−1)
2
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∗ 1 2 3 . . . n′ − 1
1 ∗ n′ n′ + 1 . . . 2n′ − 3
2 n′ ∗ 2n′ − 2 . . . 3n′ − 6

3 n′ + 1 2n′ − 2 ∗
...

...
...

...
... . . . ∗ n = n′(n′−1)

2

n′ − 1 2n′ − 3 3n′ − 6 . . . n = n′(n′−1)
2 ∗

∗ n + 1 n + 2 n + 3 . . . n + n′ − 1
n + 1 ∗ n + n′ n + n′ + 1 . . . n + 2n′ − 3
n + 2 n + n′ ∗ n + 2n′ − 2 . . . n + 3n′ − 6

n + 3 n + n′ + 1 n + 2n′ − 2 ∗
...

...
...

...
... . . . ∗ 2n

n + n′ − 1 n + 2n′ − 3 n + 3n′ − 6 . . . 2n ∗
∗ 3n + 1 3n + 2 3n + 3 . . . 3n + n′ − 1

3n + 1 ∗ 3n + n′ 3n + n′ + 1 . . . 3n + 2n′ − 3
3n + 2 3n + n′ ∗ 3n + 2n′ − 2 . . . 3n + 3n′ − 6

3n + 3 3n + n′ + 1 3n + 2n′ − 2 ∗
...

...
...

...
... . . . ∗ 4n

3n + n′ − 1 3n + 2n′ − 3 3n + 3n′ − 6 . . . 4n ∗

∗ 2n + 1 2n + 2 2n + 3 . . . 2n + n′ − 1
2n + 1 ∗ 2n + n′ 2n + n′ + 1 . . . 2n + 2n′ − 3
2n + 2 2n + n′ ∗ 2n + 2n′ − 2 . . . 2n + 3n′ − 6

2n + 3 2n + n′ + 1 2n + 2n′ − 2 ∗
...

...
...

...
... . . . ∗ 3n

2n + n′ − 1 2n + 2n′ − 3 2n + 3n′ − 6 . . . 3n ∗

Figure 1: Arrangement of 4n treatments in four quadrants



12 Parneet Kaur and Davinder Kumar Garg

P3 =


0 0 2(n′ − 2) 0

0 0 (n′−2)(n′−3)
2 0

2(n′ − 2) (n′−2)(n′−3)
2 0 n′(n′−1)

2

0 0 n′(n′−1)
2 0



P4 =


0 0 0 2(n′ − 2)

0 0 0 (n′−2)(n′−3)
2

0 0 n′(n′ − 1) 0

2(n′ − 2) (n′−2)(n′−3)
2 0 0


Note: It has been observed that we can consider any number of, say t (t≥ 3),

partitions instead of just four such that each partition has exactly n = n′(n′−1)
2 ; n′ > 3

treatments following two-associate triangular association scheme arranged in n′ × n′

matrix in each partition. In such a situation, we have the following m-associate
class association scheme

i. Two treatments in the same row or same column of the matrix in the same
partition are mutually first associates.

ii. Two treatments in the same partition but not in the same row or column
of the matrix are second associates of each other.

iii. Treatments in the (i-2)th partition from the partition to which treatment,
say α, belongs are said to be the ith-associates of treatment α ( i = 3, 4,
. . . , m).

m =

{
t−1

2 + 2; if t is odd
t
2 + 2; if t is even

The parameters of the above association scheme are:

v = tn; t ≥ 3, n =
n′(n′ − 1)

2
; n′ > 3

If t is odd

n1 = 2(n′ − 2), n2 =
(n′ − 2)(n′ − 3)

2

n3 = n4 = n5 = . . . = nm = 2n = n′(n′ − 1)

If t is even

n1 = 2(n′ − 2), n2 =
(n′ − 2)(n′ − 3)

2

n3 = n4 = n5 = . . . = n(m−1) = 2n = n′(n′ − 1), nm = n =
n′(n′ − 1)

2
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4.2.2. Series-I

Let us consider v = 4n treatments as discussed in association scheme
defined in section 4.2.1 being arranged in four quadrants each containing exactly

n treatments, where n = n′(n′−1)
2 ; n′ > 3 . We can form a set of b blocks from these

v = 4n treatments such that ith block has treatment i along with the treatments
present in the quadrant diagonal to the quadrant containing treatment i. Thus
in all we will obtain a set of b = 4n blocks and this set of b blocks constitute a
four-associate class PBIB design following the association scheme 4.2.1 with the
following parameters:

v = 4n = b, r = n + 1 = k, n =
n′(n′ − 1)

2
; n′ > 3

λ1 = n = λ2, λ3 = 0, λ4 = 2

Example 4.2. Let us illustrate the above construction methodology
by taking n′ = 4. Thus, we have n = 4(4−1)

2 = 6 and we have a set of v = 24
treatments arranged as following:

∗ 1 2 3
1 ∗ 4 5
2 4 ∗ 6
3 5 6 ∗

∗ 7 8 9
7 ∗ 10 11
8 10 ∗ 12
9 11 12 ∗

∗ 19 20 21
19 ∗ 22 23
20 22 ∗ 24
21 23 24 ∗

∗ 13 14 15
13 ∗ 16 17
14 16 ∗ 18
15 17 18 ∗

Figure 2: Arrangement of 24 treatments

From the above arrangement by taking the combinations of the ith treatment with
the treatments present in the diagonal quadrant, we will obtain the following set
of blocks:

(1, 13, 14, 15, 16, 17, 18) (2, 13, 14, 15, 16, 17, 18) (3, 13, 14, 15, 16, 17, 18)

(4, 13, 14, 15, 16, 17, 18) (5, 13, 14, 15, 16, 17, 18) (6, 13, 14, 15, 16, 17, 18)

(7, 19, 20, 21, 22, 23, 24) (8, 19, 20, 21, 22, 23, 24) (9, 19, 20, 21, 22, 23, 24)

(10, 19, 20, 21, 22, 23, 24) (11, 19, 20, 21, 22, 23, 24) (12, 19, 20, 21, 22, 23, 24)

(13, 1, 2, 3, 4, 5, 6) (14, 1, 2, 3, 4, 5, 6) (15, 1, 2, 3, 4, 5, 6)

(16, 1, 2, 3, 4, 5, 6) (17, 1, 2, 3, 4, 5, 6) (18, 1, 2, 3, 4, 5, 6)

(19, 7, 8, 9, 10, 11, 12) (20, 7, 8, 9, 10, 11, 12) (21, 7, 8, 9, 10, 11, 12)

(22, 7, 8, 9, 10, 11, 12) (23, 7, 8, 9, 10, 11, 12) (24, 7, 8, 9, 10, 11, 12)
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The above set of 24 blocks will form a four-associate class PBIB design with the
following parameters:

v = 24 = b r = 7 = k λ1 = 6 λ2 = 6 λ3 = 0 λ4 = 2

The parameters of the association scheme are:

n1 = 4 n2 = 1 n3 = 12 n4 = 6

P1 =


2 1 0 0
1 0 0 0
0 0 12 0
0 0 0 6

 P2 =


4 0 0 0
0 0 0 0
0 0 12 0
0 0 0 6



P3 =


0 0 4 0
0 0 1 0
4 1 0 6
0 0 6 0

 P4 =


0 0 0 4
0 0 0 1
0 0 12 0
4 1 0 0



4.2.3. Series-II

As already stated earlier in the association scheme that n treatments, in
each of the four quadrants, are arranged in n′ × n′ matrix with blank diagonal
entries, we can form a set of blocks by taking a set of two rows of treatments from
the adjacent quadrants and its treatments as the elements of block. In all, we
will get a set of b = 4n′2 blocks and this set of blocks will give us a four-associate
class PBIB design following the association scheme 4.2.1 with the given below
parameters:

v = 4n; n =
n′(n′ − 1)

2
; n′ > 3

b = 4n′2 r = 4n′ k = 2(n′ − 1)

λ1 = 2n′ λ2 = 0 λ3 = 4 λ4 = 0

Example 4.3. To illustrate the above construction methodology, let us
take n′ = 4. In this case, we have a set of v = 24 treatments. Now from figure 2,
by taking the combinations of rows with rows in adjacent quadrants we obtain
the following set of b = 64 blocks:



Tm-type and Tm-assisted PBIB designs 15

(1, 2, 3, 7, 8, 9) (1, 2, 3, 7, 10, 11) (1, 2, 3, 8, 10, 12)

(1, 2, 3, 9, 11, 12) (1, 2, 3, 19, 20, 21) (1, 2, 3, 19, 22, 23)

(1, 2, 3, 20, 22, 24) (1, 2, 3, 21, 23, 24) (1, 4, 5, 7, 8, 9)

(1, 4, 5, 7, 10, 11) (1, 4, 5, 8, 10, 12) (1, 4, 5, 9, 11, 12)

(1, 4, 5, 19, 20, 21) (1, 4, 5, 19, 22, 23) (1, 4, 5, 20, 22, 24)

(1, 4, 5, 21, 23, 24) (2, 4, 6, 7, 8, 9) (2, 4, 6, 7, 10, 11)

(2, 4, 6, 8, 10, 12) (2, 4, 6, 9, 11, 12) (2, 4, 6, 19, 20, 21)

(2, 4, 6, 19, 22, 23) (2, 4, 6, 20, 22, 24) (2, 4, 6, 21, 23, 24)

(3, 5, 6, 7, 8, 9) (3, 5, 6, 7, 1011) (3, 5, 6, 8, 10, 12)

(3, 5, 6, 9, 11, 12) (3, 5, 6, 19, 20, 21) (3, 5, 6, 19, 22, 23)

(3, 5, 6, 20, 22, 24) (3, 5, 6, 21, 23, 24) (7, 8, 9, 13, 14, 15)

(7, 8, 9, 13, 16, 17) (7, 8, 9, 14, 16, 18) (7, 8, 9, 15, 17, 18)

(7, 10, 11, 13, 14, 15) (7, 10, 11, 13, 16, 17) (7, 10, 11, 14, 16, 18)

(7, 10, 11, 15, 17, 18) (13, 14, 15, 19, 20, 21) (13, 14, 15, 19, 22, 23)

(13, 14, 15, 20, 22, 24) (13, 14, 15, 21, 23, 24) (13, 16, 17, 19, 20, 21)

(13, 16, 17, 19, 22, 23) (13, 16, 17, 20, 22, 24) (13, 16, 17, 21, 23, 24)

(14, 16, 18, 19, 20, 21) (14, 16, 18, 19, 22, 23) (14, 16, 18, 20, 22, 24)

(15, 17, 18, 21, 23, 24) (15, 17, 18, 19, 20, 21) (15, 17, 18, 19, 22, 23)

(15, 17, 18, 20, 22, 24) (15, 17, 18, 21, 23, 24)

The above set of 64 blocks constitutes a four-associate class PBIB design following
association scheme 4.2.1 having the following parameters:

v = 24 b = 64 r = 16 k = 6 λ1 = 8 λ2 = 0 λ3 = 4 λ4 = 0

The parameters of the association scheme are same as those given in Example 4.2.

4.2.4. Series-III

From the arrangement of v = 4n treatments in four quadrants as already
discussed, if we form a set of blocks by taking two rows of treatments such that
each of the row is placed in a quadrant diagonal to that of the other, and taking
the treatment numbers as the elements of block, we will obtain a total of b = 2n′2

blocks and this set of blocks will constitute a four-associate class PBIB design
following the association scheme 4.2.1 with the following parameters:

v = 4n; n =
n′(n′ − 1)

2
; n′ ≥ 3

b = 2n′2 r = 2n′ k = 2(n′ − 1)

λ1 = n′ λ2 = 0 λ3 = 0 λ4 = 4
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Example 4.4. As an illustration, let us take of n′ = 4. Now using figure
2 and following the above discussed methodology, for the set of v = 24 treatments,
we will get the following set of blocks:

(1, 2, 3, 13, 14, 15) (1, 2, 3, 13, 16, 17) (1, 2, 3, 14, 16, 18)

(1, 2, 3, 15, 17, 18) (3, 5, 6, 13, 14, 15) (3, 5, 6, 13, 16, 17)

(3, 5, 6, 14, 16, 18) (3, 5, 6, 15, 17, 18) (1, 4, 5, 13, 14, 15)

(1, 4, 5, 13, 16, 17) (1, 4, 5, 14, 16, 18) (1, 4, 5, 15, 17, 18)

(7, 8, 9, 19, 20, 21) (7, 8, 9, 19, 22, 23) (7, 8, 9, 20, 22, 24)

(7, 8, 9, 21, 23, 24) (2, 4, 6, 13, 14, 15) (2, 4, 6, 13, 16, 17)

(2, 4, 6, 14, 16, 18) (2, 4, 6, 15, 17, 18) (7, 10, 11, 19, 20, 21)

(7, 10, 11, 19, 22, 23) (7, 10, 11, 20, 22, 24) (7, 10, 11, 21, 23, 24)

(8, 10, 12, 19, 20, 21) (8, 10, 12, 19, 22, 23) (8, 10, 12, 20, 22, 24)

(8, 10, 12, 21, 23, 24) (9, 11, 12, 19, 20, 21) (9, 11, 12, 19, 22, 23)

(9, 11, 12, 20, 22, 24) (9, 11, 12, 21, 23, 24)

The above set of 32 blocks constitutes a four-associate class PBIB design based
on association scheme with the following parameters:

v = 24 b = 32 r = 8 k = 6 λ1 = 4 λ2 = 0 λ3 = 0 λ4 = 4

The parameters of the association scheme are same as given in Example 4.2.

5. APPLICATIONS

Not only PBIB designs have found their applications in agricultural experi-
mentation, these designs are being largely explored in various other fields also,
for example, in group testing, cryptography, medicine, clinical trials, reliability
theory, etc. Relevant work in this direction is due to authors like Smith ([25]),
Hinkelmann and Kempthorne ([6]), Narain and Arya ([9]), Braun ([3]), Singh
and Hinkelmann ([20]), etc. The applications of PBIB designs in sample surveys
have been discussed by Raghavarao and Singh ([13]), Singh et al. ([21]), See et
al. ([16]), Sharma and Garg ([18]), etc.
Apart from this, the application of triangular designs having two associate classes
(T2-type designs) in the key predistribution has been discussed by Ruj and Roy
([14]) in their landmark paper thereby increasing the scope of Tm-type PBIB
designs. Let us discuss the applications of PBIB designs using the illustration of
testing of car tires as discussed by Naseer and Jawad ([10]). Suppose that we want
to test 10 different kinds of car tires manufactured by different companies. In this
case, we have a set of v = 10 treatments and the blocks are in the form of different
cars. Since each car can have only four tires, our blocks in this case are capable of
accommodating only four treatments and complete block designs cannot be used.
Therefore, we need an incomplete block design to test the different types of tires.
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Among the incomplete block designs, balanced incomplete block (BIB) designs
are the only designs which are both variance balanced and efficiency balanced
but these designs sometimes require a large number of experimental units to test
a particular set of treatments. For example, in order to test v = 10 different
types of tires using blocks of size k = 4, we need a minimum of b = 15 blocks,
i.e., we require at least 60 experimental units. Now, if such a large number of
experimental units are not available due to various constraints, BIB design cannot
be used. In such a situation, we can opt for a PBIB design. For example, in order
to test the above set of v = 10 treatments, we can use method discussed in section
3 to construct a PBIB design having parameters v = 10, b = 5, r = 2 and k = 4,

i.e., we need only 20 experimental units which are 1
3

rd
of the total experimental

units required in above discussed BIB design. The layout of this PBIB design is
as given below:

Position of tire Cars
1 2 3 4 5

Front Left A A D C B

Front Right B E E G F

Back Left C F H H I

Back Right D G I J J

6. CONCLUSION

The higher-associate class PBIB designs are important because these provide
designs with new parametric combinations of v, b, r and k. Moreover, higher-
associate class PBIB designs, many times, come out to be more efficient than
the corresponding lower-associate class PBIB designs having the same values of
the parameters v, b, r and k. This give rise to the need for the study and
construction of PBIB designs with associate classes m ≥ 3. In this direction, the
present paper has been written to make contributions towards higher associate-
class PBIB designs and for this we have first constructed a new series of Tm-type
PBIB designs and then based on this series, we have obtained some series of
Tm-assisted PBIB designs by employing some easy and interesting construction
techniques. Thus, we have enhanced the literature of PBIB designs. We have
also discussed the corresponding association schemes in their fully generalized
forms. We have also demonstrated how these designs can further be used to
construct more PBIB designs with different parameters based on different types
of association schemes. It shows how unique combinatorial properties of Tm-type
PBIB designs can assist in deriving more series of PBIB designs which should
inspire the present and future researchers to further explore these designs.
We have also provided a table which enlists some of the PBIB designs constructed
in this paper and compares them with some of the PBIB designs listed in the
table of PBIB designs provided by Clatworthy et al. ([5]) for the same values of
parameters v, b, r and k.
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Table 1: PBIB designs constructed in this paper.

Sr. No. v b r k λi Oeff Obtained From
†1 6 4 2 3 λ1 = 1, λ2 = 0 0.6 Method 3

1 a 6 4 2 3 λ1 = 0, λ2 = 1 0.6 SR18
†2 10 5 2 4 λ1 = 1, λ2 = 0 0.5 Method 3

2 a 10 5 2 4 λ1 = 1, λ2 = 0 0.5 T28
†3 10 5 3 6 λ1 = 2, λ2 = 1 0.7778 Method 3

3 a 10 5 3 6 λ1 = 2, λ2 = 1 0.7778 T57
†4 15 6 2 5 λ1 = 1, λ2 = 0 0.4286 Method 3

4 a 15 6 2 5 λ1 = 1, λ2 = 0 0.4286 T48
*5 20 6 3 10 λ1 = 2, λ2 = 1, λ3 = 0 0.6842 Method 3

5 a 20 6 3 10 λ1 = 3, λ2 = 1 0.6491 S106
§6 20 10 5 10 λ1 = 4, λ2 = 3, λ3 = 2, λ4 = 1, λ5 = 0 0.6758 Method 4.1
†7 21 7 2 6 λ1 = 1, λ2 = 0 0.375 Method 3

7 a 21 7 2 6 λ1 = 1, λ2 = 0 0.375 T65
‖8 21 7 5 15 λ1 = 4, λ2 = 3 0.9 Method 3
§9 24 24 7 7 λ1 = 6, λ2 = 6, λ3 = 0, λ4 = 2 0.3407 Method 4.2.2
‖10 24 64 16 6 λ1 = 8, λ2 = 0, λ3 = 4, λ4 = 0 0.3587 Method 4.2.3

11 24 32 8 6 λ1 = 4, λ2 = 0, λ3 = 0, λ4 = 4 0.3261 Method 4.2.4
‖12 30 12 6 15 λ1 = 4, λ2 = 2, λ3 = 0, λ4 = 4, λ5 = 2 0.6973 Method 4.1
‖13 35 7 3 15 λ1 = 2, λ2 = 1, λ3 = 0 0.6078 Method 3
‖14 35 7 4 20 λ1 = 3, λ2 = 2, λ3 = 1 0.7794 Method 3
‖15 40 12 6 20 λ1 = 4, λ2 = 2, λ3 = 0, λ4 = 6, λ5 = 4, λ6 = 2, λ7 = 0 0.6923 Method 4.1
§16 40 50 10 8 λ1 = 5, λ2 = 0, λ3 = 0, λ4 = 4 0.2795 Method 4.2.4
‖17 40 40 11 11 λ1 = 10, λ2 = 10, λ3 = 0, λ4 = 2 0.3136 Method 4.2.2
‖18 42 14 7 21 λ1 = 5, λ2 = 3, λ3 = 0, λ4 = 4, λ5 = 2 0.7068 Method 4.1
‖19 56 8 3 21 λ1 = 2, λ2 = 1, λ3 = 0 0.5454 Method 3
‖20 70 14 7 35 λ1 = 6, λ2 = 5, λ3 = 4, λ4 = 3, λ5 = 2, λ6 = 1, λ7 = 0 0.7057 Method 4.1

* Design constructed in the chapter and has greater overall efficiency factor than the corresponding design listed in
Clatworthy et al. ([5]) for same parametric combination v, b, r and k.
† Design constructed in the chapter and has exactly same overall efficiency factor than the corresponding design
listed in Clatworthy et al. ([5]) for same parametric combination v, b, r and k.
§ Design constructed in the chapter and there is no listed design in Clatworthy et al. ([5]) for same parametric
combination v, b, r and k.
‖ Design constructed in the chapter with r, k > 10.
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A. R Programming Codes

The R programming code for the computerized construction of Tm-type
and Tm-assisted PBIB designs discussed are as follows:

A.1. Code 1

Code for developing the PBIB designs discussed in 3:
series1<-function(x){
b<-length(x)
r<-0
for(i in 1:b){
if (x[i]==1){
r<-r+1 } }
v<-factorial(b)/(factorial(r)*factorial(b-r))
k<-v*r/b
l<-c()
m<-min(r,b-r)
for(i in 1:m){
l[i]<-r-i }
p<-1
mat<-combn(b,r)
N<-matrix(nrow=v,ncol=b)
cat(”The Blocks of the Tm type PBIB design are:\n”)
for(ii in 1:v){
for(jj in 1:b){
if(mat[p,ii]==jj){
N[ii,jj]<-1
p<-p+1
if(p>r){
p<-p%%r } }
else
N[ii,jj]<-0 } }
for(j in 1:b){
cat(”(”)
for(kk in 1:v){
if (N[kk,j]==1)
cat(kk,” ”) }
cat(”)”)
cat(”\n”) }
cat(”The parameters of the above design are:\n”)
cat(”v = ”,v,”\t b = ”, b, ”\t r = ”, r, ”\t k = ”, k, ”\n”)
for(i in 1:m)
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cat(”lambda ”,i, ” = ”, l[i],”\t” ) }
cat(”\n”) }

A.2. Code 2

Code for developing the PBIB designs discussed in 4.1:
series2<-function(x){
b1<-length(x)
r1<-0
r2<-0
for(i in 1:b1){
if (x[i]==1){
r1<-r1+1 }
else
r2<-r2+1 }
m1<-min(r1,b1-r1)
l1<-c()
l2<-c()
for(i in 1:m1){
l1[i]<-r1-i
l2[i]<-r2-i }
v1<-factorial(b1)/(factorial(r1)*factorial(b1-r1))
k1<-v1*r1/b1
p<-1
mat<-combn(b1,r1)
N<-matrix(nrow=v1,ncol=b1)
for(ii in 1:v1){
for(jj in 1:b1){
if(mat[p,ii]==jj){
N[ii,jj]<-1
p<-p+1
if(p>r1){
p<-p%%r1 } }
else
N[ii,jj]<-0 } }
Nc<-matrix(nrow = v1, ncol = b1)
for(p in 1:v1){
for (q in 1:b1) {
if(N[p,q]==1){
Nc[p,q]<-0 }
else
Nc[p,q]<-1 } }
v<-2*v1
b<-2*b1



Tm-type and Tm-assisted PBIB designs 21

r<-r1+r2
k<-v1
N1<-cbind(N,Nc)
N2<-cbind(Nc,N)
Nf<-rbind(N1,N2)
cat(”The Blocks of the Tm assisted PBIB design are:\n”)
for(j in 1:b){
cat(”(”)
for(kk in 1:v){
if (Nf[kk,j]==1)
cat(kk,” ”) }
cat(”)”)
cat(”\n”) }
D<-abs(r1-r2)
m<-2*m1+1
l<-c()
if(D==0){
for (i in 1:m1) {
l[i]<-l1[i]+l2[i] }
l[m1+1]<-r
for(i in (m1+2):m){
l[i]<-l[i-(m1+1)]
} } else if(D==1){
for (i in 1:m) {
l[i]<-r-i
} }else{
for (i in 1:m1) {
l[i]<-l1[i]+l2[i] }
l[m1+1]<-0
for (i in (m1+2):m) {
l[i]<-l[i-(m1+1)]-(D-2) } }
cat(”The parameters of the above design are:\n”)
cat(”v = ”,v,”\t b = ”, b, ”\t r = ”, r, ”\t k = ”, k, ”\n”)
for(i in 1:m){
cat(”lambda ”,i, ” = ”, l[i],”\t” ) } }

A.3. Code 3

To execute the following function first install and load the R package
Matrix. Following is the R programming Code for developing the PBIB designs
discussed in 4.2.2:
series3<-function(n1){
n<-n1*(n1-1)/2
v<-4*n
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a<-1:n
A1<-matrix(nrow=n1,ncol=n1)
diag(A1)<-0
A1[lower.tri(A1)]<-1:n
B1<-forceSymmetric(A1,”L”)
A2<-matrix(nrow=n1,ncol=n1)
diag(A2)<-0
A2[lower.tri(A1)]<-(n+1):(2*n)
B2<-forceSymmetric(A2,”L”)
A3<-matrix(nrow=n1,ncol=n1)
diag(A3)<-0
A3[lower.tri(A3)]<-(2*n+1):(3*n)
B3<-forceSymmetric(A3,”L”)
A4<-matrix(nrow=n1,ncol=n1)
diag(A4)<-0
A4[lower.tri(A4)]<-(3*n+1):(4*n)
B4<-forceSymmetric(A4,”L”)
C1<-cbind(B1,B2)
C2<-cbind(B4,B3)
D<-rbind(C1,C2)
b<-v
r<-n+1
k<-r
l<-c(n,n,0,2)
cat(”The Blocks of the design are:\n”)
p<-1
for (i in 1:4) {
for (j in ((i-1)*n+1):(i*n)) {
if(i==1){
cat(”(”,j,(2*n+1):(3*n),”)”)
cat(”\n”)
} else if(i==2){
cat(”(”,j,(3*n+1):(4*n),”)”)
cat(”\n”)
} else if(i==3){
cat(”(”,j,(1):(n),”)”)
cat(”\n”)
} else{
cat(”(”,j,(n+1):(2*n),”)”)
cat(”\n”) } } }
cat(”The parameters of the design are:\n”)
cat(”v = ”,v,”\t”,”b = ”,b,”\t”,”r = ”,r,”\t”,”k = ”,k,”\n”)
for(i in 1:4){
cat(”lambda ”,i,” = ”,l[i],”\t”) } }
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A.4. Code 4

To execute the following function first install and load the R package
Matrix. Following is the R programming code for developing the PBIB designs
discussed in 4.2.3:
series4<-function(n1){
n<-n1*(n1-1)/2
v<-4*n
a<-1:n
A1<-matrix(nrow=n1,ncol=n1)
diag(A1)<-0
A1[lower.tri(A1)]<-1:n
B1<-forceSymmetric(A1,”L”)
A2<-matrix(nrow=n1,ncol=n1)
diag(A2)<-0
A2[lower.tri(A1)]<-(n+1):(2*n)
B2<-forceSymmetric(A2,”L”)
A3<-matrix(nrow=n1,ncol=n1)
diag(A3)<-0
A3[lower.tri(A3)]<-(2*n+1):(3*n)
B3<-forceSymmetric(A3,”L”)
A4<-matrix(nrow=n1,ncol=n1)
diag(A4)<-0
A4[lower.tri(A4)]<-(3*n+1):(4*n)
B4<-forceSymmetric(A4,”L”)
C1<-cbind(B1,B2)
C2<-cbind(B4,B3)
D<-rbind(C1,C2)
b<-4*n1*n1
r<-4*n1
k<-2*(n1-1)
l<-c(2*n1,0,4,0)
p<-c()
pp<-c()
cat(”The blocks of the design are:\n”)
for (i in 1:n1) {
ii<-1
for (j in 1:n1) {
if(D[i,j]!=0){
p[ii]<-D[i,j]
ii<-ii+1 } }
for (jj in (1):(n1)) {
iii<-1
for (ij in (n1+1):(2*n1)) {
if(D[jj,ij]!=0){
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pp[iii]<-D[jj,ij]
iii<-iii+1 } }
cat(p,pp,”\n”) } }
for (i in (n1+1):(2*n1)) {
ii<-1
for (j in (1):(n1)) {
if(D[i,j]!=0){
p[ii]<-D[i,j]
ii<-ii+1 } }
for (jj in (n1+1):(2*n1)) {
iii<-1
for (ij in (n1+1):(2*n1)) {
if(D[jj,ij]!=0){
pp[iii]<-D[jj,ij]
iii<-iii+1 } }
cat(p,pp,”\n”) } }
for (i in 1:n1) {
ii<-1
for (j in 1:n1) {
if(D[j,i]!=0){
p[ii]<-D[j,i]
ii<-ii+1 } }
for (jj in (1):(n1)) {
iii<-1
for (ij in (n1+1):(2*n1)) {
if(D[ij,jj]!=0){
pp[iii]<-D[ij,jj]
iii<-iii+1 } }
cat(p,pp,”\n”) } }
for (i in (n1+1):(2*n1)) {
ii¡-1
for (j in (1):(n1)) {
if(D[j,i]!=0){
p[ii]<-D[j,i]
ii<-ii+1 } }
for (jj in (n1+1):(2*n1)) {
iii<-1
for (ij in (n1+1):(2*n1)) {
if(D[ij,jj]!=0){
pp[iii]<-D[ij,jj]
iii<-iii+1 } }
cat(p,pp,”\n”) } }
cat(”The parameters of the above design are:\n”)
cat(”v = ”,v,”\t b = ”, b, ”\t r = ”, r, ”\t k = ”, k, ”\n”)
for(i in 1:4){
cat(”lambda ”,i, ” = ”, l[i],”\t” ) } }
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A.5. Code 5

To execute the following function first install and load the R package
Matrix. Following is the R programming code for developing the PBIB designs
discussed in 4.2.4:
series5<-function(n1){
n<-n1*(n1-1)/2
v<-4*n
a<-1:n
A1<-matrix(nrow=n1,ncol=n1)
diag(A1)<-0
A1[lower.tri(A1)]<-1:n
B1<-forceSymmetric(A1,”L”)
A2<-matrix(nrow=n1,ncol=n1)
diag(A2)<-0
A2[lower.tri(A1)]<-(n+1):(2*n)
B2<-forceSymmetric(A2,”L”)
A3<-matrix(nrow=n1,ncol=n1)
diag(A3)<-0
A3[lower.tri(A3)]<-(2*n+1):(3*n)
B3<-forceSymmetric(A3,”L”)
A4<-matrix(nrow=n1,ncol=n1)
diag(A4)<-0
A4[lower.tri(A4)]<-(3*n+1):(4*n)
B4<-forceSymmetric(A4,”L”)
C1<-cbind(B1,B2)
C2<-cbind(B4,B3)
D<-rbind(C1,C2)
b<-2*n1*n1
r<-2*n1
k<-2*(n1-1)
l<-c(n1,0,0,4)
p<-c()
pp<-c()
cat(”The blocks of the design are:\n”)
for (i in 1:n1) {
ii<-1
for (j in 1:n1) {
if(D[i,j]!=0){
p[ii]<-D[i,j]
ii<-ii+1 } }
for (jj in (n1+1):(2*n1)) {
iii<-1
for (ij in (n1+1):(2*n1)) {
if(D[jj,ij]!=0){
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pp[iii]<-D[jj,ij]
iii<-iii+1 } }
cat(p,pp,”\n”) } }
for (i in (n1+1):(2*n1)) {
ii<-1
for (j in (1):(n1)) {
if(D[j,i]!=0){
p[ii]<-D[j,i]
ii<-ii+1 } }
for (jj in (1):(n1)) {
iii<-1
for (ij in (n1+1):(2*n1)) {
if(D[ij,jj]!=0){
pp[iii]<-D[ij,jj]
iii<-iii+1 } }
cat(p,pp,”\n”) } }
cat(”The parameters of the above design are:\n”)
cat(”v = ”,v,”\t b = ”, b, ”\t r = ”, r, ”\t k = ”, k, ”\n”)
for(i in 1:4){
cat(”lambda ”,i, ” = ”, l[i],”\t” ) } }
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